Monetizing Information: Competition in Online Markets

Alok Gupta
Carlson School Professor of IDSc

What’s this about…

> Economics based design and management of systems
 - Business Processes
 - Technology and Infrastructure
 - As a driver
 - As a support mechanism
 - Mechanisms
 - B2C
 - B2B
Rationale Belief...

Online Prices Should converge, resulting in little or no price dispersion!

Why is This Important?

<table>
<thead>
<tr>
<th>Online Shopping by Product Category</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Clothing and accessories</td>
<td>87%</td>
</tr>
<tr>
<td>Books/Magazines</td>
<td>67%</td>
</tr>
<tr>
<td>Music/DVD/Video</td>
<td>65%</td>
</tr>
<tr>
<td>Computer HD or SW</td>
<td>65%</td>
</tr>
<tr>
<td>Toys, Video games</td>
<td>50%</td>
</tr>
<tr>
<td>Consumer Electronics</td>
<td>48%</td>
</tr>
<tr>
<td>Tickets (movies, concerts, theatre)</td>
<td>43%</td>
</tr>
<tr>
<td>Gifts and Collectibles</td>
<td>42%</td>
</tr>
<tr>
<td>Health & beauty items</td>
<td>38%</td>
</tr>
<tr>
<td>Gift Card/Certificates</td>
<td>38%</td>
</tr>
<tr>
<td>Furniture, home & garden</td>
<td>29%</td>
</tr>
<tr>
<td>Pet supplies</td>
<td>26%</td>
</tr>
<tr>
<td>Sporting goods</td>
<td>23%</td>
</tr>
<tr>
<td>Jewelry/watches</td>
<td>22%</td>
</tr>
<tr>
<td>Food</td>
<td>22%</td>
</tr>
<tr>
<td>Other</td>
<td>9%</td>
</tr>
</tbody>
</table>

Source: DoubleClick (www.performics.com)
Theory and Reality

Theory
- Individuals can easily search the price information and everything else being equal price should converge (Bakos, 1997)
- The "law of one price" is no law at all (Varian, 1980)
 - Firms use randomization strategy
 - Making it difficult for individuals to search

Reality
- Greater than 50% price dispersion exists due to
 - Retailer heterogeneity
 - Branding
 - Awareness
 - Trust
 (Brynjolfsson and Smith, 2000)
- Price dispersion persists over time, though
 - Number of firms decline
 - The range of prices tightens
 (Baye et. al., 2002)

Is Price the Most Important Factor?

<table>
<thead>
<tr>
<th>FEATURES BRINGING SHOPPERS BACK TO A WEB SITE</th>
<th>top box</th>
<th>top-z boxes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Free/Flat Shipping</td>
<td>66%</td>
<td>92%</td>
</tr>
<tr>
<td>Privacy Policies/Guaranty</td>
<td>66%</td>
<td>83%</td>
</tr>
<tr>
<td>Order Tracking</td>
<td>56%</td>
<td>88%</td>
</tr>
<tr>
<td>Rebates/Coupons</td>
<td>43%</td>
<td>76%</td>
</tr>
<tr>
<td>Online Outlet</td>
<td>39%</td>
<td>75%</td>
</tr>
<tr>
<td>Customer Reviews</td>
<td>37%</td>
<td>74%</td>
</tr>
<tr>
<td>Comparison Capabilities</td>
<td>30%</td>
<td>73%</td>
</tr>
<tr>
<td>Price/Product Alerts</td>
<td>30%</td>
<td>63%</td>
</tr>
<tr>
<td>Live Help</td>
<td>30%</td>
<td>58%</td>
</tr>
</tbody>
</table>

Source: DoubleClick (www.performics.com)
Small Business Patterns

How often do you use search engines to do each of the following for your business?
(Rate on a Scale of 1-5 where 5 means "very frequently" and 1 means "not at all frequently") (N=292)

- To read other customer/user reviews: 18.8%
- To read a professional/expert review: 20.9%
- To make a purchase: 37.7%
- To find a place to purchase: 49.1%
- To get more info from the specific manufacturer or service website: 43.0%
- To compare prices: 45.2%
- To get more information about my options: 46.0%

Source: DoubleClick (www.performics.com)

The Value of Information

How frequently do you discover new/relevant products/services for your business that you weren't aware of, but learned as a result of your searches?

- 18.8%
- 31.5%
- 49.7%
- 50.3%

4/2/2008
Competing with Information!

Information…

> Is the competitive tool for the Internet
> Facilitation (google, froogle, BizRate, etc.)
> Organization (Amazon, Yahoo Pipes, mashups…)
> Derivation (DoubleClick, Google Analytics, etc.)
> Transparency and monetization
 - Understand consumers’ needs
 - Usage patterns
 - Importance/Valuation
My Contention

> Web based commerce will evolve to competition based on “information transparency.”
> Firms need to compete by developing focused information revelation strategies and appropriately pricing their product.

“Before, companies guarded and filtered information, now, we are all naked.”
Eugene Polistuk, Former CEO Celestica

An Illustrative Example
Market Transparency Space

![Graph showing product transparency and price transparency across different travel websites](image-url)
Timeline

- **Oct 2000**: Hotwire Launch
- **June 2001**: Orbitz Launch
- **Jan 2005**: Travelocity introduces Matrix Display
- **April 2005**: Hotwire introduces Transparency based fares
- **Jan 2006**: Priceline introduces Matrix
- **June 2006**: Priceline introduces transparent fares
- **Feb 2007**: Hotwire introduces tools to look up historical Prices

Effect of Transparency

- Combined booking data and ticketed price data for 2.15 MM tickets.
- 46 Origin/ Destinations
- Economy class
- Offline and online agencies
- 1 year period: 09/2003-08/2004

![Price Elasticity of Demand](chart)

<table>
<thead>
<tr>
<th></th>
<th>Aggregate</th>
<th>Offline</th>
<th>Online Total</th>
<th>Expedia</th>
<th>Travelocity</th>
<th>Hotwire</th>
<th>Online Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price Elasticity of Demand</td>
<td>0.83</td>
<td>0.81</td>
<td>0.83</td>
<td>1.54</td>
<td>1.31</td>
<td>1.00</td>
<td>0.73</td>
</tr>
</tbody>
</table>
Market Transparency Strategy

Information revelation to consumers, competitors, intermediaries, suppliers

Consumable Information, Complex Mechanisms and User Behavior
FCC Auctions

> In March 2008, FCC auctioned 700 MHz band which currently carries on-air television broadcasts; this band will be freed up after February 17, 2009 when all broadcasts will become digital.
> Verizon and AT&T won most of the auctions.
> These auctions were for various bands (frequencies) and geographical locations.
> The process took several auctions; in a given auction, several frequencies over several territories were sold together.
> Such auctions are called Combinatorial Auctions.

4/2/2008

Transparency in Complex Trading Mechanisms

> Combinatorial Auctions
 > Multiple items (goods) or units are auctioned simultaneously
 > Bids on item combinations are allowed, e.g.,
 • $400 on (TV, DVD player, speaker set)
 > Motivation: complementarity and substitutability
 • Complimentarity -- Such as TV and DVD Player
 • Substitutability – A portable TV v/s DVD player
Original Motivation

> PQT Auctions – iterative multi-unit, no partial fulfillment auctions
> Bidder bewilderment
 • “I wasn’t in the winner list but ultimately I won without changing my bid…”
 • “What new bid do I place for x units? I bid higher than the highest winning bid but still wasn’t included in the winner’s list…”

Practical applications

> FCC spectrum auctions (McAfee and McMillan 1996; Banks et al. 2003)
> Rights to use railroad tracks (Brewer & Plott 1996)
> Delivery routes (Caplice 1996, Sandholm 2000)
> Airport time slots (Rassenti et al. 1982)
> Procurement of school meals (Epstein et al. 2002)
Complexity of combinatorial auctions

> Challenges:
 > The number of possible packages increases exponentially with number of items
 • Winner determination is NP-hard
 • Participation is cognitively complex
 > Earlier solutions
 > Discrete bidding rounds with rules and restrictions

An Example

> Auction set: { A, B, C, D }
> Bids:
 1. $50 on { A } WIN: $50 (1)
 2. $70 on { A, B } WIN: $70 (2)
 3. $80 on { B, C } WIN: $130 (1, 3)
 4. $65 on { C, D } WIN: $135 (2, 4)
 5. $10 on { D } WIN: $140 (1, 3, 5)
 6. $30 on { B } WIN: $145 (1, 4, 6)
Our Focus: Bidder Support

> Questions:
 > Is my bid currently winning?
 > Is it possible for my bid to win?
 > I want to bid on itemset X. How much should I bid to be among the currently winning bids?
 > Which bids are winning right now?
 > Facilitate: combinatorial auctions on eBay

Our Approach

Google it!

> Analysis of problem complexity revealed that if solutions could be maintained then change in solution due to a new bid can be computed in real-time.
> Designed and mathematically defined some fundamental concepts such as dead & live bids, and sub auctions.
 (Adomavicius and Gupta, ISR 2005)
Level of Transparency

> What is appropriate level of transparency that
> Provides high efficiency
 • To create higher societal wealth
> Is fair
 • To create incentives for adoption

Real-time Bidder Support Infrastructure – Outcome Feedback

> Based on bid classification scheme developed in prior research (Adomavicius & Gupta, 2005)

Bid History (Reverse chronological):

<table>
<thead>
<tr>
<th>Bid No.</th>
<th>Bid Set</th>
<th>Bid Amount</th>
<th>Bid Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.</td>
<td>BC</td>
<td>$15.00</td>
<td>00:00:32</td>
</tr>
<tr>
<td>5.</td>
<td>AB</td>
<td>$13.00</td>
<td>00:00:10</td>
</tr>
</tbody>
</table>

Live and Winning

Live but not Winning
Real-time Bidder Support Infrastructure - Process Feedback

Effect of Transparency

> Overall Economic Impact
 > Transparency increases efficiency (or reduces waste) thereby increasing the overall wealth created by the transaction.

> Participant Benefits
 > Auctioneer Benefit
 • Larger with partial transparency
 > Bidder Benefits
 • Larger with complete transparency

> Bidder Behavior
 > Much more closer to typical auctions with complete feedback
 > More strategic behavior with partial transparency
Likelihood of Acceptance

<table>
<thead>
<tr>
<th></th>
<th>Level 1</th>
<th>Level 2</th>
<th>Level 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Promoters</td>
<td>25%</td>
<td>41%</td>
<td>54%</td>
</tr>
<tr>
<td>Detractors</td>
<td>19%</td>
<td>13%</td>
<td>6%</td>
</tr>
<tr>
<td>NPS</td>
<td>6 points</td>
<td>28 points</td>
<td>48 points</td>
</tr>
</tbody>
</table>

4/2/2008

Final Word

> Design of customer-oriented systems need to take economic impact into account
> By understanding its users and controlling the transparency of appropriate information, systems can
 > Provide control over the process/economic activity
 > Control/provision of incentives
> Transparency needs to be explicitly considered in system design
 > Not just provision of data but provision of ‘useful data’
 > Need to understand user behavior

4/2/2008
Thank You!